본문 바로가기
  • CobsLab upgrades your company value by AI technology

인공지능 외주56

GTRANS-Grouping and Fusing Transformer Layers for Neural Machine Translation 안녕하세요 콥스랩(COBS LAB)입니다. 오늘 소개해 드릴 논문은 ‘GTRANS-Grouping and Fusing Transformer Layers for Neural Machine Translation'입니다. 해당 내용은 유튜브 ‘딥러닝 논문 읽기 모임' 중 ‘GTRANS-Grouping and Fusing Transformer Layers for Neural Machine Translation’ 영상 스크립트를 편집한 내용으로, 영상으로도 확인하실 수 있습니다. (영상링크:https://youtu.be/DgqnbETZNZw) 논문요약부터 간단하게 보여 드리겠습니다. 논문은 트랜스포머 모델의 Multi level layer의 어떤 정보들을 활용해서 fusion 방식을 통해서 그 정보를 잘 취합해서.. 2023. 1. 13.
An Image is Worth 16x16 Words:Transformers for Image Recognition at Scale 안녕하세요 콥스랩(COBS LAB)입니다. 오늘 소개해 드릴 논문은 ‘An Image is Worth 16x16 Words:Transformers for Image Recognition at Scale’입니다. 해당 내용은 유튜브 ‘딥러닝 논문 읽기 모임' 중 ‘An Image is Worth 16x16 Words:Transformers for Image Recognition at Scale’ 영상 스크립트를 편집한 내용으로, 영상으로도 확인하실 수 있습니다. (영상링크:https://youtu.be/NjJXGRDzsYk) Paper with Cdoe에 리더보드를 보면 최근 detection task에서 Transformer 기반의 모델들이 SOTA를 달성하고 있는 것을 알 수 있습니다. 이러한 수많은 .. 2023. 1. 9.
MetaFormer is Actually What You Need for Vision 안녕하세요 콥스랩(COBS LAB)입니다. 오늘 소개해 드릴 논문은 ‘MetaFormer is Actually What You Need for Vision’입니다. 해당 논문은 2022년 CVPR에서 Oral presentation에 선정된 논문입니다. 해당 내용은 유튜브 ‘딥러닝 논문 읽기 모임' 중 ‘MetaFormer is Actually What You Need for Vision’ 영상 스크립트를 편집한 내용으로, 영상으로도 확인하실 수 있습니다. (영상링크:https://youtu.be/ThCkRzh9Ohw) 오늘 발표드리려고 하는 MetaFormer 논문에 대해서 간략하게 요약을 해드리고 시작하겠습니다. 간단하게 표현을 하면은 일반화된 트랜스포머 구조 정도로 이해해 주시면 될 거 같습니다. .. 2023. 1. 2.
Numpy 기초 (1) - 배열 정의 및 생성, 배열 shape, 배열 연산 안녕하세요 콥스랩(COBS LAB)입니다. 오늘 소개해드릴 주제는 Numpy입니다. 이번에는 배열 데이터를 다룰 수 있는 파이썬 라이브러리인 넘파이(Numpy)의 개념과 기본 배열 생성에 대해 알아보도록 하겠습니다. 목차 배열 정의 및 생성 배열 shape 배열 연산 Numpy란? 파이썬 기반 데이터 분석 환경에서 NumPy는 행렬 연산을 위한 핵심 라이브러리입니다. NumPy는 “Numerical Python “의 약자로 대규모 다차원 배열과 행렬 연산에 필요한 다양한 함수를 제공합니다. 파이썬 list 객체를 개선한 NumPy의 ndarray 객체를 사용하면 더 많은 데이터를 더 빠르게 처리할 수 있습니다. Numpy를 사용하는 이유 : 메모리 사이즈 : 메모리 버퍼에 배열 데이터를 저장하고 처리하는.. 2022. 12. 26.